M5-04: Discovering The Central Limit Theorem in Python

Part of the "Polling, Confidence Intervals, and the Normal Distribution" Learning Badge **Video Walkthrough:** https://discovery.cs.illinois.edu/m5-04/

The Central Limit Theorem

The central limit theorem informs us that the **more times we sample** from **any distribution** the sum of those samples will tend towards a normal distribution. To discover this property ourselves, we need to both (1) sample from a distribution and then (2) aggregate the samples by summing the results together. Let's tackle each part independently!

Part 1: Sampling from a Distribution

A distribution is the set and frequency of all possible outcomes. One simple distribution is that of a game of roulette where you always bet on red. Knowing a roulette table has 18 red spaces, 18 black spaces, and 2 green spaces, let's create our roulette distribution:

Distribution of Winnings in Roulette Betting on Red				
Outcome	Frequency	Value		
Red				
Not-Red				

Note that this distribution has only two results, so it is a textbook **Bernoulli Distribution** with p=____. We can use Python to sample from this distribution:

Python:	
Description:	Sample from a Bernoulli Distribution with p=

Insight: We could also have simulated this distribution, by simulating drawing for a queen many times with a **drawForQueen** function:

```
def playRoulette(n):
gamesWon = 0
for i in range(n):
    result = random.randint(0, 38)
    if result <= 17: # Assume 0-17 are red results
        gamesWon = gamesWon + 1
return gamesWon / n # % of games won for `n` games played</pre>
```

However, since we have an exact mathematical model, the simulation is not needed.

M5-04: Discovering The Central Limit Theorem in Python

Part of the "Polling, Confidence Intervals, and the Normal Distribution" Learning Badge Video Walkthrough: https://discovery.cs.illinois.edu/m5-04/

Part 2: Aggregating Samples from a Distribution

To discover the central limit theorem, we now must simulate sampling the distribution various numbers of times.

Puzzle #1: Write the simulation that runs 10.000 times that samples the "R

"Roulette Betting on Red" distribution only one time each simulation :						
	Python:					
	Description:	on: Simulates sampling from the "Roulette Betting on Red" one time.				
When using df.plot.hist() to create a histogram of the distribution, what is the resultant histogram?						
	Histogram v sample froi distribution (m the				
Puzzle #2: Modify Puzzle #1 to find the sum of \mathbf{k} samples from the distribution, where \mathbf{k} is a number we can configure (ex: k=10, k=1000, k=10000, etc).						
Puzzle #3: Find the histograms for increasingly large values of k :					_	
1						

Simulation with k=10	Simulation with k=100	Simulation with k=10000

...what trends do you see as **k** gets larger?